March 14, 2013

Is it a Higgs boson or isn't it?

The Associated Press

GENEVA  — The search is all but over for a subatomic particle that is a crucial building block of the universe.

Physicists announced Thursday they believe they have discovered the subatomic particle predicted nearly a half-century ago, which will go a long way toward explaining what gives electrons and all matter in the universe size and shape.

The elusive particle, called a Higgs boson, was predicted in 1964 to help fill in our understanding of the creation of the universe, which many theorize occurred in a massive explosion known as the Big Bang. The particle was named for Peter Higgs, one of the physicists who proposed its existence, but it later became popularly known as the "God particle."

The discovery would be a strong contender for the Nobel Prize. Last July, scientists at the European Organization for Nuclear Research, or CERN, announced finding a particle they described as Higgs-like, but they stopped short of saying conclusively that it was the same particle or was some version of it.

Scientists have now finished going through the entire set of data.

"The preliminary results with the full 2012 data set are magnificent and to me it is clear that we are dealing with a Higgs boson, though we still have a long way to go to know what kind of Higgs boson it is," said Joe Incandela, a physicist who heads one of the two main teams at CERN, each involving several thousand scientists.

Whether or not it is a Higgs boson is demonstrated by how it interacts with other particles and its quantum properties, CERN said in the statement. After checking, scientists said the data "strongly indicates that it is a Higgs boson."

The results were announced in a statement by the Geneva-based CERN and released at a physics conference in the Italian Alps.

CERN's atom smasher, the $10 billion Large Hadron Collider that lies beneath the Swiss-French border, has been creating high-energy collisions of protons to investigate how the universe came to be the way it is.

The particle's existence helps confirm the theory that objects gain their size and shape when particles interact in an energy field with a key particle, the Higgs boson. The more they attract, so the theory goes, the bigger their mass will be.

 

click image to enlarge

This 2011 image provided by CERN, shows a real CMS proton-proton collision in which four high energy electrons (green lines and red towers) are observed in a 2011 event. The event shows characteristics expected from the decay of a Higgs boson but is also consistent with background Standard Model physics processes. Physicists say they are now confident they have discovered a long-sought subatomic particle known as a Higgs boson. The European Organization for Nuclear Research, called CERN, says Thursday March 14, 2013 a look at all the data from 2012 shows that what they found last year was a version of what is popularly referred to as the "God particle."

AP

Were you interviewed for this story? If so, please fill out our accuracy form

Send question/comment to the editors




Further Discussion

Here at PressHerald.com we value our readers and are committed to growing our community by encouraging you to add to the discussion. To ensure conscientious dialogue we have implemented a strict no-bullying policy. To participate, you must follow our Terms of Use.

Questions about the article? Add them below and we’ll try to answer them or do a follow-up post as soon as we can. Technical problems? Email them to us with an exact description of the problem. Make sure to include:
  • Type of computer or mobile device your are using
  • Exact operating system and browser you are viewing the site on (TIP: You can easily determine your operating system here.)